Package: weed (via r-universe)

October 10, 2024
Title Wrangler for Emergency Events Database

Version 1.1.2
Maintainer Ram Kripa <ram.m.kripa@berkeley.edu>

Description Makes research involving EMDAT and related datasets
easier. These Datasets are manually filled and have several
formatting and compatibility issues. Weed aims to resolve these
with its functions.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports readxl, dplyr, magrittr, tidytext, stringr, tibble, geonames,
countrycode, purrr, tidyr, forcats, ggplot2, sf, here

URL https://github.com/rammkripa/weed

BugReports https://github.com/rammkripa/weed/issues
Repository https://rammkripa.r-universe.dev

RemoteUrl https://github.com/rammkripa/weed

RemoteRef HEAD

RemoteSha 9264f6e5c88f11fedc26e9bd15761a252f03e922

Contents

ge0COde L e e e
geocode_batches L.
located_in_bOX s
located_in_shapefile
nest_locations e e e e
percent_located_disasters e
percent_located_locations oL oL
read_emdat L L e e e
split_locations e

https://github.com/rammkripa/weed
https://github.com/rammkripa/weed/issues

2 geocode

Index 11

geocode GeoCodes text locations using the GeoNames API

Description

Uses the location_word and Country columns of the data frame to make queries to the geonames
API and geocode the locations in the dataset.

Note:
1. The Geonames API (for free accounts) limits you to 1000 queries an hour

2. You need a geonames username to make queries. You can learn more about that here

Usage

geocode(., n_results = 1, unwrap = FALSE, geonames_username)

Arguments
a data frame which has been locationized (see weed: : split_locations)
n_results number of lat/longs to get
unwrap if true, returns latl, lat2, Ingl, Ing2 etc. as different columns, otherwise one lat

column and 1 Ing column
geonames_username
Username for geonames API. More about getting one is in the note above.

Value

the same data frame with a lat column/columns and Ing column/columns

Examples

df <- tibble::tribble(

~value, ~location_word, ~Country,
"mumbai region, district of seattle, sichuan province”, "mumbai”,"India",
"mumbai region, district of seattle, sichuan province”, "seattle”, "USA"

)

geocode(df, n_results = 1, unwrap = TRUE, geonames_username = "rammkripa")

https://www.geonames.org/manual.html

geocode_batches 3

geocode_batches Geocode in batches

Description

Geocode in batches

Usage

geocode_batches(
batch_size = 990,
wait_time = 4800,
n_results = 1,
unwrap = FALSE,
geonames_username

)
Arguments

data frame

batch_size size of each batch to geocode

wait_time in seconds between batches Note: default batch_size and wait_time were set
to accomplish the geocoding task optimally within the constraints of geonames
free access

n_results same as geocode

unwrap as in geocode

geonames_username
as in geocode

Value

df geocoded

Examples

df <- tibble::tribble(

~value, ~location_word, ~Country,

"mumbai region, district of seattle, sichuan province”, "mumbai”,"India"”,

"mumbai region, district of seattle, sichuan province”, "seattle”, "USA",

"mumbai region, district of seattle, sichuan province”, "sichuan”, "China, People's Republic”

)

geocode_batches(df, batch_size = 2, wait_time = 0.4, geonames_username = "rammkripa”)

4 located_in_box

located_in_box Locations In the Box

Description

Creates a new column (in_box) that tells whether the lat/long is in a certain box or not.

Usage

located_in_box(
lat_column = "lat”,
lng_column = "1lng",
top_left_lat,
top_left_Ilng,
bottom_right_lat,
bottom_right_lng

)
Arguments
Data Frame that has been locationized. see weed: :split_locations
lat_column Name of column containing Latitude data
lng_column Name of column containing Longitude data

top_left_lat Latitude at top left corner of box

top_left_lng Longitude at top left corner of box
bottom_right_lat

Latitude at bottom right corner of box
bottom_right_lng

Longitude at bottom right corner of box

Value

A dataframe that contains the latlong box data

Examples

d <- tibble::tribble(

~value, ~location_word, ~Country, ~lat, ~1lng,

"city of new york”, "new york", "USA", 40.71427, -74.00597,
"kerala, chennai municipality, and san francisco”, "kerala", "India", 10.41667, 76.5,
"kerala, chennai municipality, and san francisco”, "chennai”, "India"”, 13.08784, 80.27847)
located_in_box(d, lat_column = "lat”,

lng_column = "1ng",

top_left_lat = 45,
bottom_right_lat = 12,
top_left_lng = -80,
bottom_right_lng = 90)

located_in_shapefile

located_in_shapefile Locations In the Shapefile

Description

Creates a new column (in_shape) that tells whether the lat/long is in a certain shapefile.

Usage

located_in_shapefile(

A

lat_column = "lat"”,
Ing_column = "1ng”,
shapefile = NA,
shapefile_name = NA
)
Arguments
Data Frame that has been locationized. see weed: : split_locations
lat_column Name of column containing Latitude data
Ing_column Name of column containing Longitude data
shapefile The shapefile itself (either shapefile or shapefile_name must be provided)

shapefile_name
vided)

Value

Data Frame with the shapefile data as well as the previous data

Examples

Not run:

d <- tibble::tribble(

~value, ~location_word,

"city of new york”, "new york",
"kerala, chennai municipality, and san francisco”,
"kerala, chennai municipality, and san francisco”,
located_in_shapefile(d,

~Country,

"chennai”,

lat_column = "lat",
Ing_column = "1ng",
shapefile_name = "~/dummy_name")

End(Not run)

~lat,

FileName/Path to shapefile (either shapefile or shapefile_name must be pro-

~1lng,
"USA", 40.71427, -74.00597,
"kerala”, "India", 10.41667, 76.5,
"India”, 13.08784, 80.2847)

nest_locations

nest_locations Nest Location Data into a column of Tibbles

Description

Nest Location Data into a column of Tibbles

Usage

nest_locations(

*

key_column = "Dis No",
columns_to_nest = c("location_word”, "lat", "lng"),
keep_nested_cols = FALSE
)
Arguments
Locationized data frame (see weed: : split_locations)
key_column Column name for Column that uniquely IDs each observation

columns_to_nest

Column names for Columns to nest inside the mini-dataframes
keep_nested_cols

Boolean to Keep the nested columns externally or not.

Value

Data Frame with A column of data frames

Examples

d <- tibble::tribble(
~value, ~location_word, ~Country, ~lat, ~1lng,

"city of new york"”,"new york","USA", <c(40.71427, 40.6501), c(-74.00597, -73.94958),

"kerala"”, "kerala”, "India",c(10.41667, 8.4855), c(76.5, 76.94924),

"chennai municipality”,"chennai”,"India", c(13.08784, 12.98833),c(80.27847, 80.16578),
"san francisco”, "san francisco”,"USA", c(37.77493, 37.33939), c(-122.41942, -121.89496))

nest_locations(d, key_column = "value")

percent_located_disasters 7

percent_located_disasters
Percent of Disasters Successfully Geocoded

Description

Tells us how successful the geocoding is.

How many of the disasters in this data frame have non NA coordinates?

Usage

percent_located_disasters(
how = "any",
lat_column = "lat”,
lng_column = "lng",
plot_result = TRUE

)
Arguments
Data Frame that has been locationized. see weed: :split_locations
how takes in a function, "any", or "all" to determine how to count the disaster as
being geocoded if any, at least one location must be coded, if all, all locations
must have lat/Ing if a function, it must take in a logical vector and return a single
logical
lat_column Name of column containing Latitude data
1ng_column Name of column containing Longitude data
plot_result Determines output type (Plot or Summarized Data Frame)
Value

The percent and number of Locations that have been geocoded (see plot_result for type of output)

Examples
d <- tibble::tribble(
~“Dis No~, ~value, ~location_word, ~Country, ~lat, ~lng,
1, "city of new york"”, "new york", "USA", 40.71427, -74.00597,
2, "kerala, chennai municipality, and san francisco”, "kerala”, "India"”, 10.41667, 76.5,
2, "kerala, chennai municipality, and san francisco”, "chennai”, "India", 13.08784, 80.27847)
percent_located_disasters(d,
how = "any",
lat_column = "lat",

lng_column = "1ng”,
plot_result = FALSE)

8 percent_located_locations

percent_located_locations
Percent of Locations Successfully Geocoded

Description

Tells us how successful the geocoding is.

How many of the locations in this data frame have non NA coordinates?

Usage

percent_located_locations(

L]

lat_column = "lat"”,
lng_column = "1lng",
plot_result = TRUE
)
Arguments
Data Frame that has been locationized. see weed: :split_locations
lat_column Name of column containing Latitude data
1ng_column Name of column containing Longitude data
plot_result Determines output type (Plot or Summarized Data Frame)
Value

The percent and number of Locations that have been geocoded (see plot_result for type of output)

Examples

d <- tibble::tribble(

~value, ~location_word, ~Country, ~lat, ~1ng,

"city of new york”, "new york"”, "USA", 40.71427, -74.00597,
"kerala, chennai municipality, and san francisco”, "kerala”, "India"”, 10.41667, 76.5,
"kerala, chennai municipality, and san francisco”, "chennai”, "India", 13.08784, 80.27847)
percent_located_locations(d,

lat_column = "lat",

lng_column = "1ng",

plot_result = FALSE)

read_emdat 9

read_emdat Reads Excel Files obtained from EM-DAT Database

Description

Reads Excel files downloaded from the EMDAT Database linked here

Usage

read_emdat(path_to_file, file_data = TRUE)

Arguments

path_to_file A String, the Path to the file downloaded.

file_data A Boolean, Do you want information about the file and how it was created?

Value

Returns a list containing one or two tibbles, one for the Disaster Data, and one for File Metadata.

Examples

Not run:
read_emdat(path_to_file = "~/dummy”, file_data = TRUE)

End(Not run)

split_locations Splits string of manually entered locations into one row for each loca-
tion

Description

Changes the unit of analysis from a disaster, to a disaster-location. This is useful as preprocessing
before geocoding each disaster-location pair.

Can be used in piped operations, making it tidy!

Usage

split_locations(
)
column_name = "locations”,
dummy_words = c("cities”, "states"”, "provinces”, "districts”, "municipalities”,
"regions”, "villages"”, "city", "state"”, "province”, "district"”, "municipality”,
"region”, "township”, "village"”, "near"”, "department"),
joiner_regex = ", [\\(|\\) |;|\\+]|(and)| (of)"

https://public.emdat.be/

10 split_locations

Arguments
data frame of disaster data
column_name name of the column containing the locations
dummy_words a vector of words that we don’t want in our final output.

joiner_regex aregex that tells us how to split the locations

Value

same data frame with the location_word column added as well as a column called uncertain_location_specificity
where the same location could be referred to in varying levels of specificity

Examples

locs <- c("city of new york"”, "kerala, chennai municipality, and san francisco”,
"mumbai region, district of seattle, sichuan province")

d <- tibble::as_tibble(locs)

split_locations(d, column_name = "value")

Index

geocode, 2
geocode_batches, 3

located_in_box, 4
located_in_shapefile, 5

nest_locations, 6

percent_located_disasters, 7
percent_located_locations, 8

read_emdat, 9

split_locations, 9

11

	geocode
	geocode_batches
	located_in_box
	located_in_shapefile
	nest_locations
	percent_located_disasters
	percent_located_locations
	read_emdat
	split_locations
	Index

